hierarchical planning
Hierarchical
Learning
Research papers
Digital Engineering
Digital Transformation
HPC
Deep Learning
Reinforcement Learning
Artificial Intelligence
Simulation Workflows in Minutes, at Scale for Next-Generation HPC
Authors
Allan Grosvenor, Anton Zemlyansky, Dwyer Deighan, and Dustin Sysko
Summary
As the White House pushes to decarbonize energy, the Department of Energy (DOE)’s National Reactor Innovation Center (NRIC) has an urgent need to decrease the cost and schedule for new reactor design and construction in support of the Advanced Construction Technology (ACT) initiative. Current lead time for new reactors is 20–30 years and costs $10–$15 billion. This must be dramatically reduced to bring advanced reactors online. Digital Engineering, leveraging the best multiphysics simulation and high-performance computing (HPC), offers us a unique opportunity to lead these efforts, but a paradigm shift in engineering is mandatory: right now on the order of only 1% of engineers regularly use simulation as a tool in their design toolbox—meaning it is unusual for engineers to create virtual prototypes and broadly explore the available space of design options, and test and evolve them with modeling and simulation.
Massive virtual prototype explorations are rarely done in new product development, because engineering modeling & simulation packages take months-to-years to learn, and setup of a new simulation can often require hours of laborious work. We must enable a new user to set up and run thousands of models quickly to evolve virtual prototypes. DOE has spent nearly $100 million in taxpayer funds, and decades of development, to advance HPC. There is massive untapped potential in the thousands of simulation packages in existence, and the commercial cloud computing that is plentiful and affordable today. Computational physics and HPC needs to be put in the hands of every engineer to begin a renaissance in construction and manufacturing. We present an autonomous system built to hyper-enable engineers, and the work we’ve conducted using the Summit supercomputer to pursue it.